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Abstract

In music-driven dance motion generation, most existing methods use hand-crafted
features and neglect that music foundation models have profoundly impacted
cross-modal content generation. To bridge this gap, we propose a diffusion-based
method that generates dance movements conditioned on text and music. Our
approach extracts music features by combining high-level features obtained by
music foundation model with hand-crafted features, thereby enhancing the quality
of generated dance sequences. This method effectively leverages the advantages
of high-level semantic information and low-level temporal details to improve the
model’s capability in music feature understanding. To show the merits of the
proposed method, we compare it with four music foundation models and two sets
of hand-crafted music features. The results demonstrate that our method obtains the
most realistic dance sequences and achieves the best match with the input music.

1 Introduction

Music-driven dance video generation is a challenging task in cross-modal content generation [1]. The
complexity comes from the need to generate dance movements that follow choreographic rules and
are aligned precisely with the music. Specifically, the generated motions must be expressive while
corresponding to rhythm, melody, and other musical elements. This requires the generative model to
have outstanding performance in music feature extraction.

Early music-driven dance generation approaches frame the task as a similarity-based retrieval prob-
lem [2–5] due to limited training data. These methods significantly restrict the diversity and creativity
of the outputs. With the advent of deep learning, recent advancements have treated music-driven
dance generation as a generative task [6–10]. However, most existing models are trained on datasets
with limited joint representations (e.g., 24 joints), neglecting finer hand motion details, which are
essential for enhancing the realism and expressiveness of the generated dances. Furthermore, the
existing approaches rely on hand-crafted musical features such as Mel-Frequency Cepstral Coefficient
(MFCC) [11], chroma, or one-hot beat features, which cannot fully capture the intricate link between
music and dance movements [12]. In contrast, recent advances in music foundation models have
demonstrated the potential of modern machine learning techniques to better understand and process
music in more sophisticated ways [13]. These models trained on large-scale music datasets with min-
imal supervision, serve as the foundation for multiple derived models capable of performing a wide
range of tasks, including music classification [14], music understanding [15, 16], and cross-model
generation [17, 18]. The potential of music foundation models in music-driven dance generation
remains under-explored, making it important to investigate how these models can contribute to the
quality and expressiveness of the dance generation task.

In this paper, we propose a diffusion-based method, namely Dance Generation driven by the Music
Foundation Models (DGFM), which enhances the quality of the generated dance movements by
incorporating the classical hand-crafted audio features with high-level features obtained by the pre-
trained large music foundation model. Specifically, we use Wav2CLIP [19] for high-level music
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feature extraction. Wav2CLIP is an audio-visual model trained by distilling the knowledge from
Contrastive Language-Image Pretraining (CLIP) [20]. Unlike the models that rely solely on text and
audio inputs, Wav2CLIP benefits from this additional visual context, enabling more comprehensive
learning and significantly improving motion prediction. Additionally, we use Short-Time Fourier
Transform (STFT) as hand-crafted audio features and employ CLIP to extract features from genre
prompts. By building on these components, our method captures a deeper understanding of the
relationship between music and movement, resulting in realistic and intricately detailed 3D dance
motions.

The contributions of our work can be summarized as follows: (1) We introduce DGFM which inte-
grates both music and text features as inputs. It improves hand-crafted audio features by incorporating
Wav2CLIP, significantly enhancing the dance generation quality. (2) To investigate the impact of
music understanding on dance motion generation, we compare different music foundation models
and hand-crafted music features. The results demonstrate that the combination of Wav2CLIP with
STFT features achieves promising results. (3) Extensive experiments performed on the FineDance
dataset demonstrate the effectiveness of our approach.

2 Related work

Music Foundation Model: Music foundation models are pre-trained on large-scale music datasets,
which are designed to gain a deeper understanding of underlying musical structures, genres, and
instruments [21]. The existing music foundation models can be divided into two categories. In the
first category, the models are pre-trained with a single modality. This category includes Wav2Vec
2.0 [22], which is a self-supervised model that learns audio representations from raw audio through
contrastive learning. Additionally, Li et al. [13] proposed MERT, a model for music understanding
that takes advantage of Residual VQ-VAE (RVQ-VAE) and teacher models to extract musical features,
facilitating pre-training based on mask language modeling (MLM). Jukebox [23] compresses raw
audio into discrete codes using a multi-scale VQ-VAE and models them with an autoregressive
Transformer, applied in [24] to enhance previous hand-crafted audio feature extraction strategies
for dance generation task. In the second category, the models are pre-trained by multi-modal data,
such as CLAP [25] which leverages the latent space derived from both audio and text to develop
continuous audio representations. Building on this, AudioLDM [26] utilizes CLAP to train Latent
Diffusion Models (LDMs) with audio embeddings, while text embeddings are used as conditions
during sampling. Wu et al. [19] proposed Wav2CLIP based on CLIP [20], which projects audio into
a shared embedding space along with images and text to pretrain the audio encoder. However, the
application of these models in music-driven dance generation remains under-explored. It is important
to investigate how music foundation models can contribute to enhancing dance generation tasks.

Music Driven Dance Generation: There has been extensive research exploring music-conditioned
dance generation. Early studies [2–4] formulate this task as a similarity-based retrieval problem
due to limited training data, which substantially limits the diversity and creativity of the generated
dance motions. With the development of deep learning, the mainstream approaches synthesize dance
segments from scratch via motion prediction, with methods such as convolutional neural network
(CNN) [27, 28], recurrent neural network (RNN) [29–31], and Transformer [8, 10, 32]. However,
these frame-by-frame prediction models frequently face challenges like error accumulation and
motion freezing [33]. Recent studies have focused on framing the task as a generative pipeline. Built
on VQ-VAE, TM2D [34] integrates both music and text instructions to generate dance movements that
are consistent with the provided music and contain semantic information. Bailando [6] summarizes
meaningful dance units into a quantized codebook and incorporates a reinforcement-learning-based
evaluator to ensure alignment between beats and movement during dance generation. EDGE [24]
apply a diffusion-based dance generation model, and also introduce a novel evaluation method based
on human physical plausibility. However, all these models are trained on datasets with 24 body
joints and neglect the quality of the hand motions generated. To mitigate this issue, Li et al. [35]
proposed FineNet and introduced a new dataset with 52 joints. Despite these developments, almost
all the existing models rely on hand-crafted musical features, which may lack an understanding of
the connection between music and dance movements.
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Figure 1: An overview of the proposed DGFM method.

3 Proposed Approach

In this section, we introduce our approach for generating dance movements conditioned on both
music sequences and text. Given a long music piece, we first split it into N segments with length
k and extract the 2D music feature map M ∈ Rk×D, where D represents the dimension of music
features. Our objective is to generate N dance clips of length k or a long dance movement.

The existing approaches usually neglect the importance of music feature representation. Therefore, we
present to incorporate Wav2CLIP [19] to our music encoder, which is an audio-visual correspondence
model that distills from the CLIP framework. It is trained on VGGSound [36], a YouTube audio-visual
video dataset containing approximately 200k audio clips of length 10 seconds (16kHz sampling rate)
labeled with 309 classes. For hand-crafted music features, we utilize the Librosa toolbox [37] to
extract STFT features. Additionally, for music genre labeling, we apply a prompt learning method [38]
to expand the label into a full sentence. For e.g., given the genre label "Jazz," the sentence generated
is "This is a Jazz type of music." We then use CLIP [20] to extract features from this sentence.

3.1 Preliminaries of Diffusion Models

We use a diffusion model for dance generation, which has two stages: the diffusion process and the
reverse process. In the diffusion process, we follow the approach outlined in Denoising Diffusion
Probabilistic Models (DDPM) [39]. It defines a Markov chain that progressively adds Gaussian noise
to the ground truth data m0, while allowing for the sampling of dt at any arbitrary timestep t :

q (dt | m0) = N
(
dt;

√
ᾱtm0, (1− ᾱt)I

)
(1)

where ᾱt is a constant within the range (0, 1) that is monotonically decreasing. As t increases and āt
approaches 0, the distribution of dt converges to the standard normal distribution N (0, I). We use
T = 1000 timesteps in our model.

In the denoising process, we follow EDGE [24] and develop an attention-based network frev to
reverse the forward diffusion process. The music features CM and text features CE as used as the
input conditions to predict the movement of the dance for all t. We adopt the loss function LS in
DDPM as our objective, optimizing it by learning to estimate frev(dt, t, CM , CE) ≈ m0, where
the model refines the noisy latent variable to approximate the true data distribution. Therefore, the
training objective can be defined as:

LS = Em0,t

[
∥m0 − frev(dt, t, CM , CE)∥22

]
(2)

3.2 The Proposed DGFM Method

In this section, we introduce DGFM, a diffusion-based model that utilizes both text and audio inputs
to generate full body dance movements while clearly reflecting a distinct dance genre. The overall
architecture of DGDM is illustrated in Figure 1. The input music is first divided into N 4-second

segments
{
Ĉi

M

}N

i=1
. Next, we extract the 512-dimensional Wav2CLIP features Ĉi

FM ∈ RT×512

and the 193-dimensional STFT features Ĉi
STFT ∈ RT×193, and feed them into an adapter and a
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linear layer, respectively. The linear layer projects the STFT features to a 512-dimensional vector,
then we combine them through the addition operation to obtain CM ∈ RT×512. For the input music
genre label, we apply CLIP to extract 512-dimensional features CE ∈ R512.

Following EDGE, the input pose data are represented as m ∈ Rk×319, according to the Skinned
Multi-Person Linear (SMPL) format [40]. This representation consists of three components: a 4-
dimensional foot-ground contact binary label, a 3-dimensional root translation, and 312-dimensional
rotation information using a 6-dimensional rotation representation. At each denoising timestep t,
DGFM predicts the denoised result and reintroduces noise from timestep t− 1 down to 0. We repeat
this process until all poses are generated at timestep 0. We feed the motion and music features into a
Transformer-based denoising network, which consists of a self-attention module, a cross-attention
module, multilayer perceptrons, and time-embedding Feature-wise Linear Modulation (FiLM) [41].
Subsequently, a text-specific FiLM module is incorporated, taking the output from the previous layer
Y and the text embedding CE as inputs. The embeddings are processed as follows:

FiLMt(Y ) = γY + ε, γ = θw(α(CE)), ε = θb(α(CE)) (3)

where α is a text embedding adapter used to adjust the embedding representation. θw and
θb represent the linear projections responsible for computing the weights and biases, respec-
tively. Apart from the reconstruction loss in Equ. 2, we incorporate several auxiliary losses
frequently used in motion generation tasks to improve the training stability and physical fi-
delity. Similarly to previous studies [42], we use the forward kinematic function FK(·) to
transform the joint angles into their corresponding joint positions, calculating the joint loss

LJ = 1
k

∑k
j=1

∥∥∥FK
(
mj

)
− FK

(
m̂j

)∥∥∥2
2
, where j represents the frame index and m̂j represents

the predicted pose for this frame. We also compute velocity and acceleration, introducing the veloc-

ity loss: LV = 1
k−1

∑k−1
j=1

∥∥∥(mj+1 − mj
)
−
(

m̂j+1 − m̂j
)∥∥∥2

2
. Last, we apply the contact loss LC

which leverages binary foot-ground contact labels to optimize the consistency in foot contact during

motion generation: LC = 1
k−1

∑k−1
j=1

∥∥∥(FK
(

m̂j+1
)
− FK

(
m̂j

))
· b̂

j
∥∥∥2
2
, where b̂

j
denotes the

predicted binary foot-ground contact labels. The overall training loss is defined by the weighted sum
of the above loss functions L = LS + λJ LJ + λV LV + λC LC , where λ is are balancing parameters.

4 Experimental Setup and Results

Dataset: We evaluate the proposed method on FineDance dataset [35], which contains 7.7 hours of
paired music and dance, totaling 831, 600 frames at 30 fps across different 16 genres. The average
dance length is 152.3 seconds. The skeletal data of FineDance is stored in a 3D space and is
represented by the standard 52 joints, including the finger joints. For all methods, we train on 183
pieces of music from the training set and generate 270 dance clips across 18 songs from the test set,
using the corresponding real dances as ground truth.

Implementation Details: The training for our proposed approach uses two NVIDIA GeForce RTX
3090 GPU cards. The batch size and total number of epochs are set to 512 and 2000, respectively.
The learning rate is set to 1e− 4, the hidden dimension is set to 512, and the guidance weight is set
to 2.7. Four evaluation metrics are used in this paper, including Frechet inception distance (FID) [6],
Diversity [6], Physical Foot Contact (PFC) [24] and Beat Alignment Score (BAS) [43].

Main Results: We first visualize the generated dance motions for three different music genres in
Figure 2. The results are accompanied by the corresponding music, demonstrating that the proposed
method is capable of generating realistic and complex dance movements with distinct characteristics.
Then we compare the proposed method with four different music foundation models: CLAP [25],
Wav2Vec [22], Jukebox [23] (used by the baseline model EDGE), and Wav2CLIP [19], as well as two
sets of hand-crafted music features: STFT and 35-D Feature Set, which comprises 35-dimensional
features provided by the FineDance dataset [35]. The results are reported in Table 1.

The experimental results indicate that the dance movements generated using music foundation models
generally exhibit better physical realism and consistency with the music. Specifically, Wav2CLIP
scores 0.171 in terms of PFC, while Jukebox achieves 0.223, attributed to their ability to capture a
wide range of deep musical features. In contrast, the dances generated using hand-crafted features
show better FID scores and diversity. For example, STFT produces FID scores of 18.497 for hands
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Figure 2: The generated dance motions for three different genres.

Table 1: A comparison of different music features.

Motion Quality Motion Diversity PFC↓ BAS↑
FID_hand↓ FID_body↓ Div_body↑ Div_hand ↑

CLAP [25] 36.316 65.781 6.626 8.071 0.369 0.2256
Wav2Vec [22] 35.493 30.601 6.508 7.257 0.241 0.2226
Jukebox [23] 38.578 53.336 5.687 7.453 0.223 0.2161

Wav2CLIP [19] 27.212 30.539 6.683 7.396 0.171 0.2283
STFT 18.497 26.522 7.513 8.562 0.246 0.2201

35-D Feature Set [35] 21.681 27.092 7.458 8.022 0.262 0.2156
Wav2CLIP+STFT 17.871 25.1752 7.758 8.2543 0.209 0.2218

and 26.522 for the body, along with diversity scores of 7.513 and 8.562 for body and hands. These
results suggest a closer match to the ground truth, although with diminished physical plausibility,
as indicated by a PFC score of 0.241. The use of Wav2CLIP and STFT jointly produces the best
results, combining the best FID score and diversity for the body, with other metrics also nearly
approaching the best results. While music foundation models handle complex musical patterns well,
this demonstrates that incorporating hand-crafted features improves generation of dance movements.

Table 2: A comparison with the state-of-the-art methods.

Motion Quality Motion Diversity PFC↓ BAS↑
FID_hand↓ FID_body↓ Div_body↑ Div_hand ↑

DanceRevolution [44] 219.312 98.402 6.773 1.813 4.199 0.2171
Bailando [6] 45.083 52.373 4.943 5.629 0.361 0.2152
EDGE [24] 38.578 53.336 5.687 7.451 0.223 0.2161

DGFM 20.417 23.648 7.631 8.10 0.207 0.2204

We also compare our method with the state-of-the-art dance generation models, including DanceRev-
olution [44], Bailando [6], and EDGE [24]. As shown in Table 2, the proposed method achieves the
best results across all the evaluation metrics. This highlights the advantages of combining features
extracted from Wav2CLIP and STFT. The resulting movements not only exhibit high quality and
diversity, but also maintain physical and rhythmic fidelity to the music.

5 Conclusion

In this paper, we have presented a new diffusion-based 3D dance generation approach using both music
and text features. To investigate the impact of different foundation music models and hand-crafted
music features on the motion generation task, we conducted extensive experiments. Specifically,
we compared the generation results using four different foundation music models and two sets of
hand-crafted music features. The experimental results demonstrated that the fusion of Wav2CLIP
and STFT features achieves the best performance in terms of motion quality and synchronization
with the music. Furthermore, we compared our model with several state-of-the-art models, and our
model consistently outperformed them in multiple evaluation metrics.
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